Практический журнал для бухгалтеров о расчете заработной платы

Фотографии твердого водорода при давлении 2,05 миллиона атмосфер (a, образец прозрачный и свет проходит сквозь него), 4,15 миллиона атмосфер (b, образец непрозрачный, не отражает свет), 4,95 миллиона атмосфер (с, образец непрозрачный, отражает свет).

Физики из Гарвардского университета впервые синтезировали металлический водород. Чтобы добиться этого, ученые сжали водород в алмазной наковальне под давлением почти в 5 миллионов атмосфер и охладили до 5,5 кельвина. Теоретики предсказывают , что материал может оказаться комнатнотемпературным сверхпроводником, а также обладать рядом других необычных свойств. Независимые эксперты подвергают открытие сомнению. Исследование опубликовано в журнале Science (препринт работы), его обзор приводит журнал Nature .

Водород - самый распространенный элемент во Вселенной. В обычных условиях он существует в виде бесцветного газа, каждая частица которого состоит из двух атомов водорода. Если сжать обычный водород давлениями в тысячи атмосфер, то можно получить его сначала в жидком, а потом и в твердом виде - прозрачного, не проводящего электричество материала. В 1935 году физики Вигнер и Хантингтон теоретически предсказали , что дополнительно увеличив давление можно заставить водород перейти в металлическое состояние.

Этот материал привлек к себе внимание экспериментаторов благодаря своим необычным свойствам - с одной стороны, теоретики предсказывают ему сверхпроводимость при температурах близких к комнатной. С другой стороны, в виде металлической фазы водород запасает огромную энергию и его удобно хранить - это свойство важно для ракетостроения. Попытки синтеза материала начались во второй половине XX века, но до сих пор нельзя с уверенностью сказать, что он был получен.


Фазовая диаграмма водорода. Твердый металлический водород внизу справа.

Ranga P. Dias, Isaac F. Silvera / Science, 2017

Одна из важных проблем синтеза металлического водорода - высокие давления, необходимые для фазового перехода. Вигнер и Хантингтон предсказали, что молекулярный двухатомный водород должен превращаться в металлический одноатомный водород при давлениях около 250 тысяч атмосфер и низких температурах. Это примерно в 250 раз больше, чем давление на дне Марианской впадины. Однако эксперименты показали, что эта оценка не соответствует действительности. Современные исследования предсказывают величину давления фазового перехода в 4-5 миллионов атмосфер - это эквивалентно давлению, которое оказывает объект с массой слона, стоящий на игле с площадью поверхности острия меньше квадратного миллиметра.

Авторы новой работы утверждают, что смогли синтезировать твердый металлический водород с помощью алмазной наковальни, создававшей давление в 4,95 миллиона атмосфер в охлаждаемой жидким гелием ячейке. Этот прибор представляет собой пару высококачественных алмазов, с плоскими отшлифованными гранями наковальни. Их сжимают, вкручивая длинные стальные винты.


Схема эксперимента

R. Dias and I.F. Silvera

Ранее гарвардский коллектив ученых уже предпринимал попытки синтеза металлического водорода - в ходе экспериментов физики выяснили несколько проблем, осложняющих достижение больших давлений. В первую очередь водород способен проникать в алмаз и делать его более хрупким. С ростом давлений это приводит к разрушению «наковальни». Во-вторых, лазерное излучение, используемое для мониторинга состояния ячейки, также может привести к разрушению алмаза (например, инфракрасное излучение способно превратить алмаз в графит). Чтобы избежать этих сложностей авторы модифицировали традиционный эксперимент.

Физики покрыли алмазные поверхности аморфным оксидом алюминия (толщиной 50 нанометров), для предотвращения диффузии водорода. Кроме того, использование лазерного излучения в эксперименте было минимизировано - оценка давлений делалась на основе количества оборотов винта.

Ученые следили за изменениями в образце с помощью микроскопа. При двух миллионах атмосфер водород был прозрачным твердым веществом. При 4,15 миллиона атмосфер образец потемнел и перестал пропускать свет. При давлении 4,95 миллиона атмосфер авторы обнаружили, что образец стал красноватым и начал хорошо отражать свет. Из спектральных данных физики определили, что в твердом водороде возникла большая концентрация свободных носителей заряда (7,7±1,1×10 23 частиц на кубический сантиметр) - в десятки раз больше чем у лития, натрия или калия (щелочных металлов). По словам ученых, это подтверждает металлическую природу материала.

Независимые эксперты, также участвующие в «гонке» синтеза металлического водорода, сомневаются в надежности работы. Во-первых, эксперимент по синтезу металлического водорода был поставлен лишь один раз и не воспроизводился. Во-вторых, свою роль могло сыграть покрытие из оксида алюминия - нет уверенности, что материал не восстановился до металлического алюминия. Евгений Грегорянц, год назад фазу-предшественник металлического водорода, также отмечает, что детальные измерения состояния ячейки были сделаны лишь при пиковых значениях давлений. На их основании нельзя надежно судить о достигнутом давлении, как и на основе количества оборотов винта.

Убедить экспертов может повторение эксперимента и дополнительные тесты. По словам Айзека Сильвера, соавтора работы, решение опубликовать статью с ограниченным количеством подтверждающих тестов было связано с тем, что образец может разрушиться при дальнейшей работе с ним. Сейчас, когда исследование опубликовано, физики планируют провести анализ рамановского рассеяния на металлическом водороде и другие тесты.

Это не первое заявление ученых о синтезе металлического водорода. В июле 2016 года группа исследователей под руководством Айзека Сильвера о синтезе жидкого металлического водорода (и также подверглась критике). В 2011 году о синтезе материала заявляли Михаил Еремец и Иван Троян из Химического института общества Макса Планка, однако, по словам химиков, надежных подтверждений до сих пор получено не было. Считается, что встретить жидкий металлический водород можно, например, в недрах Юпитера.

Владимир Королёв

МЕТАЛЛИЧЕСКИЙ ВОДОРОД

МЕТАЛЛИЧЕСКИЙ ВОДОРОД

Совокупность фаз высокого давления водорода, обладающих металлич. свойствами. Возможность перехода водорода в металлич. фазу была впервые теоретически рассмотрена Ю. Вигнером и X. Б. Хантингтоном в 1935 [I]-^B дальнейшем по мере развития методов электронной теории металлов ур-ние металлич. фаз водорода исследовалось теоретически. На рис. 1 приведена , полученная путём синтеза результатов этих расчётов с эксперим. и теоретич. данными по ур-нию состояния молекулярного водорода . При атм. давлении и низких темп-pax водород существует в виде диэлектрич. молекулярного кристалла, при повышении давления происходит переход в кри-сталлич. металлич. состояние. При этом в зависимости от темп-ры возможны 3 фазы M. в. При темп-ре T = 0 К и давлении r = 300-100 ГПа металлизация сопровождается перестройкой кристаллич. структуры, диссоциацией молекул H 2 и металлич. кристалл становится атомарным . При T > 10 К возможна металлизация с сохранением структуры молекулярного кристалла (пунктир; металлизация такого типа ранее наблюдалась в иоде). При дальнейшем повышении давления или темп-ры наступает металлич. фазы и образуется жидкий атомарный M. в.

Рис. I. Диаграмма состояния водорода.

Водород в металлич. фазе содержится в недрах планет-гигантов Юпитера и Сатурна. Согласно совр. моделям, на Юпитере водород в молекулярной фазе присутствует только до глубин порядка 0,22 радиуса планеты . На большей глубине водород в смеси с Не образует жидкую металлич. фазу (рис. 2, ).

Сообщалось о получении M. в. в экспериментах по ударному сжатию и по сжатию в алмазных наковальнях , однако надёжных эксперим. данных о давлении перехода и ур-нии металлич. фазы пока нет.

Важность получения M. в. связана с тем, что в нём должен сочетаться ряд уникальных свойств. Во-первых, из-за малой массы атомов аномально велика Де-бая Как следствие этого, темп-ра сверхпроводящего перехода Т с в твёрдой фазе при давлении порядка давления металлизации должна превышать 200 К, что значительно выше, чем у всех известных сверхпроводников, т. к..

Во-вторых, M. в. может существовать в виде квантовой жидкости. Малая атомов водорода приводит к большой величине амплитуды нулевых колебаний атомов, благодаря чему даже при T = 0 К может не происходить . В противоположность известным квантовым жидкостям (3 He и 4 He) плавление кристаллич. M. в. наступает при возрастании давления. Надёжных расчётных данных о структуре и кривой плавления металлич. фазы пока нет. Согласно нек-рым расчётам, при к-ром происходит плавление при T = 0 К, порядка давления, необходимого для металлизации, т. е. в этом случае твёрдой фазы H может не быть.

При снятии давления и обратном переходе из металлич. фазы в диэлектрическую выделяется ~290 МДж/кг, что в неск. раз выше, чем даёт любой известный вид топлива. Перспективы практич. использования M. в. в качестве аккумулятора энергии зависят от того, какие условия требуются для осуществления метастабильной металлич. фазы при частичном снятии внеш. давления и каково её . Кроме протия 1 H металлизация может происходить в кристаллах дейтерия 2 H и трития 3 H, с той лишь разницей, что квантовые свойства этих кристаллов выражены слабее, а темп-pa сверхпроводящего перехода Т с в них ниже.

Лит.: 1) Wignе г E., Hиntingtоn H. В., On the possibility of a metallic modification of hydrogen, "J. Chem. Phys.", 1935, v. 3, p. 746; 2) Stevensоn D. J., Interiors of giant planets, "Ann. Rev. Earth Planet. Sci.", 1982, v. 10, p. 257; 3) Каган Ю.,Пушкарев В., Xолас А., Уравнение состояния металлической фазы водорода, "ШЭТФ", 1977, т. 73, с. 967; 4) Ж а р к о в В. H., Внутреннее строение Земли и планет, 2 изд., M., 1983, гл. 10; 5) Григорьев Ф. В. и др., Экспериментальное определение сжимаемости водорода при плотностях 0,5+ 2 г/см 3 , "Письма в ЖЭТФ", 1972, т. 16, с. 286; 6) Ross M., Matter under extreme conditions of temperature and pressure, "Repts Progr. Phys.", 1985, v. 48, p. 1; 7) Min B. I., Jansen H. J. F., Freeman A., Structural properties superconductivity and magnetism of metallic hydrogen, "Phys. Rev. B", 1984, V. 30, № 9, p. 5076. В. В. Авилов.

Физическая энциклопедия. В 5-ти томах. - М.: Советская энциклопедия . Главный редактор А. М. Прохоров . 1988 .


Смотреть что такое "МЕТАЛЛИЧЕСКИЙ ВОДОРОД" в других словарях:

    Эта статья содержит незавершённый перевод с английского языка. Вы можете помочь проекту, переведя её до конца … Википедия

    А; м. Химический элемент (H), лёгкий газ без цвета и запаха, образующий в соединении с кислородом воду. ◁ Водородный, ая, ое. В ые соединения. В ые бактерии. В ая бомба (бомба огромной разрушительной силы, взрывное действие которой основано на… … Энциклопедический словарь

    Твёрдое агрегатное состояние водорода с температурой плавления −259,2 °C (14,16 К), плотностью 0,08667 г/см³ (при −262 °C). Белая снегоподобная масса, кристаллы гексагональной сингонии, пространственная группа P6/mmc, параметры ячейки a = 0,378… … Википедия

    Магнезиум металликум - Magnesium metallicum, Магний металлический - Химический элемент 2 й группы периодической системы Менделеева. Встречается в природе в виде магнезита, доломита, карналлита, бишофита, оливина, каинита. Серебристый металл, при обычной температуре в сухом воздухе не окисляется, с холодной водой… … Справочник по гомеопатии

    У этого термина существуют и другие значения, см. Юпитер (значения). Юпитер … Википедия

Министерство образования и науки РФ

Федеральное агентство по образованию

Государственное образовательное учреждение

Профессионального высшего учреждения ОГУ


Курсовая работа

Металлический водород


Выполнила студентка

Группы 08Физ(б)

Пичугина Екатерина

Проверил: Арифуллин М.Р.



Введение

Металлический водород

Обогащение веществ водородом - путь к его "металлизации"

3. Слой металлического водорода у Юпитера

4. Внутреннее строение Юпитера

Заключение

Литература


Введение


Как известно, в обычных условиях (скажем, при атмосферном давлении) водород состоит из молекул, кипит при Tc =20,3 К и затвердевает при Тt =14 K. Плотность твердого водорода р=0,076 г/см 3 и он является диэлектриком. Однако при достаточно сильном сжатии, когда внешние атомные оболочки оказываются раздавленными, все вещества должны переходить в металлическое состояние. Грубую оценку плотности металлического водорода можно получить, если считать, что расстояние между протонами порядка боровского радиуса. Количественные, хотя и ненадежные расчеты приводят к меньшей плотности: например, согласно, молекулярный водород находится в термодинамическом равновесии с металлическим водородом при давлении р=2,60 Мбар, когда плотность металлического водорода р = 1,15 г/см3 (плотность молекулярного водорода при этом р=0,76 г/см3). Согласно ^B дальнейшем по мере развития методов… … Физическая энциклопедия

А; м. Химический элемент (H), лёгкий газ без цвета и запаха, образующий в соединении с кислородом воду. ◁ Водородный, ая, ое. В ые соединения. В ые бактерии. В ая бомба (бомба огромной разрушительной силы, взрывное действие которой основано на… … Энциклопедический словарь

Твёрдое агрегатное состояние водорода с температурой плавления −259,2 °C (14,16 К), плотностью 0,08667 г/см³ (при −262 °C). Белая снегоподобная масса, кристаллы гексагональной сингонии, пространственная группа P6/mmc, параметры ячейки a = 0,378… … Википедия

Магнезиум металликум - Magnesium metallicum, Магний металлический - Химический элемент 2 й группы периодической системы Менделеева. Встречается в природе в виде магнезита, доломита, карналлита, бишофита, оливина, каинита. Серебристый металл, при обычной температуре в сухом воздухе не окисляется, с холодной водой… … Справочник по гомеопатии

В январе научный и околонаучный мир облетела сенсационная новость: гарвардским учёным Исааку Сильвере и Ранге Диасу удалось создать стабильный образец металлического водорода – материала, обладающего уникальной высокотемпературной сверхпроводимостью. Казалось бы, до сверхъёмких накопителей энергии остался один шаг. Но в конце февраля крошечный кусочек металла таинственным образом исчез из лаборатории.

Через давление к звёздам

Возможность создания металлического водорода в лабораторных условиях будоражит учёных больше 80 лет. В 1935 году американские физики Хиллард Белл Хантингтон и Юджин Вигнер предсказали возможность фазового перехода водорода в металлическое состояние под давлением около 250 тысяч атмосфер. Практические же попытки «спрессовать» первый элемент из периодической системы элементов до состояния металла начались в 1970-е годы и продолжаются до сих пор. Объясняется это упорство просто: согласно теоретическим построениям Хантингтона – Вигнера, металлический водород обладает уникальной способностью проводить электрический ток с минимальным сопротивлением, и что ещё важнее – едва ли не при комнатной температуре.

Возможная сфера применения этого материала необычайна широка – от сверхъёмких аккумуляторов до томографов и даже поездов на магнитной подушке. Самые смелые в своих прогнозах теоретики говорят о том, что из металлического водорода можно создать ракетное топливо, которое позволит преодолевать межзвёздные пространства. Кроме того, согласно расчётам астрофизиков, металлический водород составляет значительную часть ядра у так называемых газовых гигантов – планет вроде Юпитера. Так что работая над созданием металлического водорода, учёные в лабораторных условиях получают доступ к тайнам планетарного масштаба.

Битва за металл

В последние годы учёные по всему миру неоднократно пытались сжать крошечные образцы водорода между двумя алмазными «наковальнями». При этом давление, которого удавалось добиться, превышало давление в центре Земли. Подобные эксперименты невероятно сложны и чреваты многочисленными ошибками и сбоями. Исследователи наблюдали, как прозрачный материал, помещённый под сверхмощный пресс, начинает темнеть – это означает, что электроны водорода сближаются настолько, что поглощают фотоны видимого света. Ближе всего приблизиться к цели удалось в 2011 году немецким учёным из Института химии Макса Планка в Майнце. Но создать действительно металлический блестящий водород, который бы отражал свет, никому не удавалось. По крайней мере до минувшей осени.

5 октября 2016 года Исаак Сильвера и Ранга Диас, физики из Гарвардского университета, опубликовали на сайте arXiv.org 11-страничный труд под заголовком «Наблюдение за переходом Вигнера – Хантингтона к твёрдому металлическому водороду» (Observation of the Wigner-Huntington Transition to Solid Metallic Hydrogen). 26 января 2017 года расширенная версия доклада была опубликована на сайте знаменитого журнала Science, и именно эта публикация вызвала настоящий ажиотаж в научных кругах.

Диас и Сильвера утверждали, что им удалось сжать водород под таким давлением, которого до сих пор не достигал никто. Для этого учёные отполировали обе части алмазной наковальни, с тем чтобы избежать возможных трещин, укрепили их оксидом алюминия, взяли крошечный образец водорода, поместили всю эту конструкцию в криостат и довели температуру в нём до абсолютного нуля (-273 °С). В этих условиях они сжали крошечную частицу водорода под давлением 495 гигапаскаль, что почти в 5 млн раз превышает земное атмосферное давление.

«Мы взглянули на образец через микроскоп и увидели, что он отражает свет, блестит, как и должен металлический водород», – заявил Сильвера журналистам.


Сделанные под микроскопом снимки показывают превращение водорода в блестящую металлическую субстанцию

Червь сомнени й

Научное сообщество отреагировало немедленно. 27 января на сайте журнала Nature вышла публикация , в которой сразу пять крупных международных специалистов выразили сомнение в убедительности результатов Сильверы и Диаса.

Геофизик Александр Гончаров из Института Карнеги в Вашингтоне отметил, что блеск, который учёные увидели в микроскопе, не подтверждает того, что им удалось преобразовать водород в металл. Этим блестящим материалом вполне мог быть и оксид алюминия, покрывавший кончики бриллиантов «наковальни».

Физик Евгений Григорянц из Университета Эдинбурга был ещё более категоричен. «Всё это выдумка от начала и до конца, – сказал он. – Проблема в том, что они зафиксировали состояние вещества под максимальным давлением, но не весь процесс фазового перехода».
По мнению Поля Лубера из французского Комиссариата по атомной энергии, статья Сильверы и Диаса неубедительна. «Если они действительно хотят быть убедительными, они должны повторить эксперимент, фиксируя преобразование материала под усиливающимся давлением», – подчеркнул учёный.

Косвенно в защиту гарвардских физиков выступил главный редактор Science Джереми Берг. Не комментируя их доклад по существу, он отметил, что все присылаемые в редакцию рукописи проходят самую тщательную проверку, при этом публикуется не более 7% из них.

Тем временем Сильвера и Диас защищали своё открытие как могли.

Однако в конце февраля учёные выступили с ошеломляющим заявлением. Они рассказали, что в ходе очередного эксперимента один из алмазов наковальни разрушился, а сам образец металлического водорода исчез. «Возможно, он куда-то закатился или попросту снова превратился в газ», – растерянно сообщил Сильвера.

Куда-нибудь «закатиться» образец действительно мог, учитывая, что его диаметр составляет около 10 микрометров – в 5 раз меньше диаметра человеческого волоса. Если же он испарился, скорее всего, это значит, что учёным так и не удалось превратить газ в металл. Иными словами, мечта о металлическом водороде так и осталась лишь мечтой.


Если заметили ошибку, выделите фрагмент текста и нажмите Ctrl+Enter
ПОДЕЛИТЬСЯ:
Практический журнал для бухгалтеров о расчете заработной платы